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Abstract: Forest planning models have increased in size and complexity as planners address a growing array of economic,
ecological, and societal issues. Hierarchical production models offer a means of better managing these large and complex
models. Hierarchical production planning models decompose large models into a set of smaller linked models. For exam-
ple, in this paper, a Lagrangian relaxation formulation and a modified Dantzig–Wolfe decomposition – column generation
routine are used to solve a hierarchical forest planning model that maximizes the net present value of harvest incomes
while recognizing specific geographical units that are subject to harvest flow and green-up constraints. This allows the
planning model to consider forest-wide constraints such as harvest flow, as well as address separate subproblems for each
contiguous management zone for which detailed spatial plans are computed. The approach taken in this paper is different
from past approaches in forest hierarchical planning because we start with a single model and derive a hierarchical model
that addresses integer subproblems using Dantzig–Wolfe decomposition. The decomposition approach is demonstrated by
analyzing a set of randomly generated planning problems constructed from a large forest and land inventory data set.

Résumé : Comme les planificateurs considèrent un nombre croissant d’enjeux économiques, écologiques et sociaux, les
modèles de planification forestière deviennent de plus en plus lourds et complexes. Les modèles hiérarchiques de produc-
tion offrent une façon d’améliorer la gestion de ces gros modèles complexes. Les modèles hiérarchiques de planification
de la production décomposent les gros modèles en un ensemble de modèles plus petits reliés entre eux. Par exemple, dans
cet article, la formule de relaxation de Lagrange et une procédure modifiée de décomposition de Dantzig–Wolfe ou de
génération de colonnes ont été utilisées pour résoudre un modèle hiérarchique de planification forestière qui maximise la
valeur actuelle nette des revenus de récolte tout en considérant la spécificité des unités géographiques sujettes aux flux de
récolte et aux contraintes de régénération. Ceci permet au modèle de planification de considérer des contraintes pour l’en-
semble de la forêt telles que les flux de récolte et de considérer également des sous-problèmes spécifiques à chacune des
zones contiguës d’aménagement pour lesquelles des plans spatialement détaillés sont élaborés. L’approche considérée dans
cet article diffère des approches traditionnelles de planification forestière hiérarchique parce qu’elle débute par un modèle
unique duquel dérive un modèle hiérarchique qui traite les sous-problèmes en entier par la méthode de décomposition de
Dantzig–Wolfe. L’approche de décomposition est illustrée par l’analyse d’un ensemble de problèmes générés aléatoirement
à partir d’une vaste forêt et d’un ensemble de données d’inventaire du territoire.

[Traduit par la Rédaction]

Introduction
Forest planning models are formulated to help produce

management plans over extremely large and variable geo-
graphical areas involving multiple time periods. Forests
often consist of many noncontiguous management zones,
where each management zone is composed of several stands
(units delineated to receive the same silvicultural treatment)
that are mapped according to geographic information system
(GIS) boundaries. Forest plans address forest-wide concerns
such as harvest flow over time, as well as prescribing man-
agement treatments for each stand contained within a man-
agement zone. We refer to forest-wide constraints as joint
constraints, as they link all management zones and stands to-
gether to satisfy requirements over the entire forest. The
term management zone constraint is used for constraints that

place restrictions on how a particular management zone is
managed without consideration of other management zones.

Because of the need to consider multiple time and geo-
graphical scales, earlier hierarchical production planning
models were developed such that management-zone-level
problems and forest-level problems were formulated sepa-
rately. These approaches also include mechanisms designed
to achieve consistency among the resulting plans. Weintraub
and Bare (1996) provide an extensive review of work defin-
ing the hierarchical model used in forest planning. Instead of
formulating separate planning models to address different
geographical scales, our paper demonstrates that one model
can be formulated and then decomposed to realize a hier-
archical model. An advantage of this approach is that one
can naturally apply a decomposition algorithm, such as

Received 23 February 2006. Accepted 5 February 2007. Published on the NRC Research Press Web site at cjfr.nrc.ca on 2 November
2007.

S.D. Pittman,1,2 B.B. Bare, and D.G. Briggs. College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-
2100, USA.

1Corresponding author (e-mail: sam.pittman@weyerhaeuser.com).
2Present address: Weyerhaeuser Co., WTC 1B20, P.O. Box 9777, Federal Way, WA 98063-9777, USA.

2010

Can. J. For. Res. 37: 2010–2021 (2007) doi:10.1139/X07-026 # 2007 NRC Canada



Dantzig–Wolfe (Dantzig and Wolfe 1961), to connect the
different planning levels.

This paper demonstrates the utility of using price-directed
decomposition in a hierarchical production planning model
to coordinate the planning of several noncontiguous, spa-
tially defined management zone planning problems linked
by a joint harvest volume constraint. We first review the lit-
erature of applications of hierarchical production planning in
forestry. We then present the planning problem formulation
and the decomposition approach. We later discuss the data
used to test the formulation and solution procedure and the
hardware and software used to solve the problem. We
present the results of the algorithm applied to the test data
and finally outline our conclusions.

Literature review

The inclusion of spatial considerations in forest planning
has resulted in large integer program planning models that
are difficult to solve. Forest planners have contributed vari-
ous algorithms to solve these integer programming problems
using methodologies such as TABU search (Boston and Bet-
tinger 1999), simulated annealing (Lockwood and Moore
1993), genetic algorithms (Lu and Eriksson 2000; Falcao
and Borges 2001), simulation (Yoshimoto et al. 1994), inte-
ger programming (Nelson and Brodie 1990; Snyder and
ReVelle 1997; Gunn and Richards 2005), and dynamic pro-
gramming (Hoganson and Borges 1998). These algorithms
address tactical forest planning problems that usually incor-
porate forest-wide constraints as desirable targets to be satis-
fied. In contrast, our hierarchical production planning
method connects management-zone-level models in a frame-
work that considers all geographical scales of the planning
problem simultaneously.

Several methods have been proposed to link various plan-
ning models in a hierarchical fashion. A common theme in
forest planning models is that strategic decisions derive
from aggregate strata-based data (usually at the forest level),
while tactical decisions address spatial issues (usually at the
subforest level). Further, a framework has been adopted
wherein strategic decisions guide tactical planning models.
Recognizing the need for an iterative scheme to reconcile
the output occurring at different levels, some researchers
have proposed feedback and feed-forward mechanisms to
connect levels that are considered to be modeling different
aspects of the plan (Gunn 1991). The model of Weintraub
and Cholaky (1991) utilizes this type of iterative scheme.
Subforest or lower-level spatial problems are solved to meet
harvest volume targets specified by a forest-level strategic
problem. If feasible solutions at the lower level cannot be
found, then the upper-level problem is solved again, specify-
ing new harvest volume flow targets until feasible tactical
solutions are found to be within some tolerance from the tar-
get. Bare and Liermann (1994) present a similar model
structure, which is spatially decomposed and utilizes similar
aggregation procedures. Hof and Pickens (1987) present a
two-tiered model in which several subforest tactical plans
are proposed for each management zone. Then the upper-
tier problem selects plans for each management zone. Davis
and Martell (1993) propose a hierarchical model that ad-
dresses a forest-wide constraint based on aggregate stand

data. The solution from this strategic-level model is used to
identify spatially feasible tactical solutions. The authors in-
dicate that there is no mathematical linkage between the
strategic and tactical models; rather, the strategic model is
used to guide tactical-level planning. Nelson and Errico
(1993) present a descriptive hierarchical process using simu-
lation. They divide the forest into management zones that
form spatial subproblems. Feasible spatial alternatives are
constructed heuristically using the four-colour theorem, and
forest-wide objectives and constraints are indirectly com-
posed of spatial data aggregated from the spatial subpro-
blems. Forest-wide objectives in this approach are satisfied
using simulation rather than explicitly solved to optimality.
Gunn (1995) proposes the use of stochastic programming
with recourse at the tactical level within the hierarchical
model. He simplifies the problem by decomposing the tacti-
cal model into a hierarchy of models addressing different el-
ements within the plan.

Several authors have applied Dantzig–Wolfe decomposi-
tion to forest planning problems. Berck and Bible (1984)
demonstrate that the formulations proposed in Johnson and
Scheurman (1977) can be solved using Dantzig–Wolfe de-
composition. In an example problem, the authors report that
the decomposition method took less than half the time taken
by the revised simplex method. Hoganson and Rose (1984)
also demonstrate decomposition of the forest planning prob-
lem. Although their decomposition is similar to Dantzig–
Wolfe, their method differs in how the dual variables are up-
dated. The authors use economic interpretations of shadow
prices to update the dual variables instead of the Dantzig–
Wolfe approach that solves a master problem. Weintraub et
al. (1994) propose a decomposition method to solve forest
planning problems with joint resource constraints and
management-zone-level constraints that include spatial stand
adjacency constraints. They derive a solution to the entire
planning problem by solving the master problem, whereas
we employ a resource price vector derived from the master
problem to guide the solution of each subproblem. Paredes
(1995) provides an excellent conceptual interpretation of
Dantzig–Wolfe decomposition applied to a forest planning
problem from an economic viewpoint. His paper draws on
many of the early classic publications in economics, such
as Kornai and Liptak (1965), Heal (1973), Hurwicz
(1973), and Arrow and Hurwicz (1977), which studied eco-
nomic planning using resource and price allocation mecha-
nisms. Paredes clearly describes the similarities of
economic planning and hierarchical forest planning.
Although Paredes’ work is conceptual, it provides a step-
ping stone for the work to follow.

Our work, in applying decomposition, differs from pre-
vious studies in that the problems considered are of a mixed
integer programming (MIP) type, because of spatial integer
constraints at the management-zone-level, and our use of the
hierarchical model under the interpretation of price-directed
decomposition. Vielma et al. (2006) consider a similar
problem; however, they address area restriction rather than
unit restriction adjacency constraints (Murray 1999). In
solving the multiperiod harvest planning problem with
both area restriction adjacency and harvest flow con-
straints, Vielma et al. (2006) find that using harvest flow
constraints considerably slows down the problem solution
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time because of excessive fractioning during the integer
programming branch and bound procedure. To overcome
this, they apply a penalty approach to the harvest volume
constraints, updating the penalties applied to the volume
constraints by adding hyperplane cuts to the constraint set
during the solution of the integer programming problem.
Using this methodology, the authors are able to find close
approximate solutions to problems they were unable to
solve with strict harvest volume constraints. Their method
is similar to our work using decomposition because it up-
dates the objective function during the algorithmic process
and penalizes volume constraint violations. However, our
method differs in that it uses column generation with a
master problem to determine the penalty or price for con-
straint violation, and it decentralizes decisions regarding
management zones.

Dantzig–Wolfe decomposition has been used to solve inte-
ger programming problems for determining optimality
bounds and in branch and price algorithms (Barnhart et al.
1998; Vanderbeck 2000; Martin 1999). The branch and price
method, which computes an optimal integer solution to an
MIP problem, requires substantial additional work (algorith-
mically solving the master problem to an integer solution)
beyond what is required for linear and convex programming
problems. Our approach, unlike the branch and price
method, does not attempt to produce integer variables in the
master problem. Instead, we consider the utility of the
shadow prices produced from solving the master problem as
a linear program, but with the subproblems solved as integer
programs.

Formulation of the price-directed
decomposition approach

Figure 1 portrays an example of a hypothetical forest to
demonstrate the hierarchy of elements within a forest plan-
ning model. The forest is modeled as a group of manage-

ment zones, each consisting of one or more stands. In this
paper, a management zone is defined as a collection of geo-
graphically grouped stands. Often a management zone will
contain several groups of contiguous stands. In Fig. 1, man-
agement zone 1 has four stands and management zone 2 has
four stands. Note that management zone 2 has two blocks of
contiguous stands.

A planning model for the forest in Fig. 1 is given in [P1],
where the objective is to maximize the net present value of
harvested timber income subject to restrictions prohibiting
the harvest of adjacent stands in the previous, current, and
following planning periods and requiring the harvest flow to
be within ±10% between time periods. Note that the adja-
cency constraints are essentially type I constraints (see Ap-
pendix A) (Murray and Church 1995). In utilizing this
definition, we define management alternatives as being in
conflict on adjacent stands if any harvest activity produces
an adjacency violation between the two stands. As a conse-
quence, our model formulation is able to consider adjacency
constraints over multiple rotations (see Appendix A). We
start with the following formulation:

½P1�

maximize
XN

i¼1

XJi

j¼1

cijxij

subject to :

ð1Þ 0:9
XN

i¼1

XJi

j¼1

Vijtxij �
XN

i¼1

XJi

j¼1

Vij;tþ1xij � 0 8t < T

ð2Þ �
XN

i¼1

XJi

j¼1

Vijtxij þ 0:9
XN

i¼1

XJi

j¼1

Vij;tþ1xij � 0 8t < T

ð3Þ
XJi

j¼1

xij � 1 8i

ð4Þ xi0j0
X

i 6¼i0

XJi

j¼1

xijIi0j0;ij � 1 8i0j0

ð5Þ xij 2 f0; 1g 8i; j

where i indexes the stand; j indexes the jth management al-
ternative for stand i; t indexes the time period from 1 to T in
our formulation; T is the number of planning periods in the
problem; N is the number of stands in the planning problem

(eight stands in the example shown in Fig. 1); cij is the net
present value of stand i under the jth management alternative;
Ji is the number of management alternatives for the ith stand;
Ii’j’,ij = 1 if stand i’ under its j’th alternative produces an adja-

Fig. 1. Sample forest indicating forest structure. Polygons represent
stands. Collections of stands are referred to as management zones.
v-i indicates the ith stand of management zone v.
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cency violation with stand i under its jth alternative; Ii’j’,ij =
0 otherwise; Vijt is the volume harvested from stand i under
management alternative j in period t; xij = 1 if management
alternative j is selected for stand i; xij = 0 otherwise.

Note, that a management alternative is a specification of
management treatments by period for a stand. This may in-
clude some level of harvesting, thinning, fertilization, or a
combination of these activities. Constraints (1) and (2) in
[P1] state that harvested volume between successive periods
must be within ±10%. Constraint (3) states that each stand
must be treated by at most one management alternative.
Constraint (4) states that management alternative j on an ad-
jacent stand i may not be selected if it produces a green-up
restriction with stand i’ under alternative j’ if it is selected.
Constraint (5) enforces whole selections of management
alternatives by constraining the selection to be either 0 or
1.

The hierarchical model and Lagrangian relaxation
As shown in formulation [P1], forest planning models in-

corporate constraints that consider management actions for

all stands within a management zone and (or) across the en-
tire forest (e.g., joint constraints that restrict timber harvest
flow across the entire forest) and management zone con-
straints (e.g., spatial adjacency constraints) that restrict the
management of a contiguous group of stands within a man-
agement zone. Constraints relating management zones to the
entire forest are referred to as joint constraints, while con-
straints relating stands to a particular management zone
(subsystem) are referred to as management zone constraints.
For example, in Fig. 1, it can be seen that harvesting a stand
in management zone 1 has no effect in terms of adjacency
constraint violations to stands in management zone 2, since
zone 1 does not border zone 2. However, a timber harvest
flow constraint that considers timber harvests from all man-
agement zones and stands in the forest is usually required.
Using the hierarchical components (forest, management
zone, and stand), [P1] is reformulated so that it may be de-
composed using the principles of Dantzig–Wolfe decompo-
sition.

Generalizing [P1] to consider an arbitrary number of
stands, management zones, and time periods leads to [P2]:

½P2�

maximize
XK

k¼1

XNk

i¼1

XJi

j¼1

ckijxkij

subject to:

ð1Þ ð1� �Þ
XK

k¼1

XNk

i¼1

XJi

j¼1

Vkijtxkij �
XK

k¼1

XNk

i¼1

XJi

j¼1

Vkij;tþ1xkij � 0 8t � T

ð2Þ �
XK

k¼1

XNk

i¼1

XJi

j¼1

Vkijtxkij þ ð1� �Þ
XK

k¼1

XNk

i¼1

XJi

j¼1

Vkijtþ1xkij � 0 8t � T

ð3Þ xki0j0 þ
XNk

i¼1;i 6¼�i�

XJi

j¼1

xkijIki0j0;kij � 1 8k; i0; j0

ð4Þ
XJi

j¼1

xkij � 1 8k; i

ð5Þ xkij 2 f0; 1g

where K is the number of management zones; Nk is the
number of stands in management zone k; and � is the max-
imum proportion of harvest flow deviation among periods.

The notation of [P2] is the same as for [P1], except that
now kij indicates the ith stand of management zone k under
the jth management alternative. Let xv be the vector that
contains all xkij variables in management zone k, now in-
dexed by v. Moreover let cv be the vector that contains all
of the coefficients ckij. This allows the first two constraints
in the problem to be represented compactly as [1], where
the matrix Av contains the coefficients in the first two con-
straints in [P2], and n is the number of management zones
in the problem.

½1�
Xn

v¼1

Av � ����� ¼ 0

The last three constraints in [P2] can be written more gen-
erally as [2], where the matrix Bv and resource constraint bv
contain the constraints for management zone v.

½2� Bv � bv
xv 2 f0; 1g

This gives rise to [P3]:

½P3�

maximize
Xn

v¼1

cvxv

subject to :

ð1Þ
Xn

v¼1

Avxv � �����

ð2Þ Bvxv � bv v ¼ 1; 2; :::; n

ð3Þ xv 2 f0; 1g
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Lagrangian relaxation is applied to this formulation to ob-
tain [P4], where constraints (1) are moved to the objective

function with price y paid for their violation. The motivation
for this is to obtain a decentralized formulation of [P3].

½P4�
maximize

Xn

vi¼1

cvxv þ yð����� �
Xn

v¼1

AvxvÞ ¼
Xn

v¼1

½cvxv � yAvxv� � y �����

subject to :

ð2Þ Bvxv � bv v ¼ 1; 2; :::; n

ð3Þ xv 2 f0; 1g

A slight amount of algebraic manipulation transforms [P4]
into [P5], where the constant y����� term in [P4] is dropped,
since it does not effect the optimization.

½P5�
maximize

Xn

v¼1

ðcvxv þ yAvxvÞ

subject to

ð2Þ Bvxv � bv v ¼ 1; 2; :::; n

ð3Þ xv 2 f0; 1g

In general, y represents the prices paid for joint, scarce re-
sources consumed by the individual management zones. In
formulation [P5], y represents the cost (penalty) of timber
harvest flow restrictions. For a fixed y, [P5] can be solved
by simply solving (n) smaller optimization problems of the
form [P6] and a master problem that guides the process.

½P6�

maximize cvxv þ yAvxv
subject to :

ð2Þ Bvxv � bv
ð3Þ xv 2 f0; 1g

Next, we discuss the decomposition algorithm that allows
each management zone, given the appropriate price of joint
resources (e.g., penalty costs for timber harvest flow viola-
tion), to be solved separately.

Dantzig–Wolfe decomposition and column generation
Column generation (see Dantzig 1963) provides a mech-

anism for iterative resource price determination in re-
sponse to plans generated for each separate management
zone. The prices are determined by solving a master prob-
lem (see Dantzig 1963, p. 448). Example problem [E1],
with two management zones, is used to demonstrate the
approach before moving to a general formulation. [E1]
represents an instance of [P3] with two management
zones.

½E1�

minimize c1x1 þ c2x2
subject to :

ð1Þ A1x1 þ A2x2 � �����
ð2Þ B1x1 � b1
ð3Þ B2x2 � b2
ð4Þ x1 2 f0; 1g; x2 2 f0; 1g

In initiating the solution, a resource price of y = 0 is
used in formulation [P6], indicating that the harvest flow
constraints are being ignored during the first iteration. Us-
ing the solution to [P6] for each management zone, we
formulate the following linear program (i.e., the master
problem):

½E2�

maximize ðc1x01Þz01 þ ðc2x2Þz02
subject to :

ð1Þ ðA1x
0
1Þz01 þ ðA2x

0
2Þz02 � �����

ð2:1Þ z01 � 1

ð2:2Þ z02 � 1

ð3Þ zhv � 0 8v; h

where x01 is the solution for management zone 1 at itera-
tion 0, which is generated by solving [P6] with resource
prices set to 0. In general, xhv is the solution to [P6] for
management zone v at the hth iteration of the algorithm.
z01 is a solution of the master problem for management
zone 1 at the 0th iteration (the first time the master pro-
blem is solved). z01 indicates the proportion of plan 0 for
management zone 1 that is used in the solution of the mas-
ter problem. In general, zhv indicates the proportion of the
hth plan submitted for management zone v that is used in
the solution of the master problem. The master problem
maximizes the value of the entire forest planning problem
by selecting the level of use from the various plans gener-
ated from solving the subproblems. Note that the joint con-
straints (1) in this problem ensure that the joint constraints
in the original problem are satisfied, while the constraints
specify that a convex combination of the plans for each
management zone does not exceed unity. Upon solving
this problem, a Lagrange multiplier, y1, for constraint (1)
is determined. The Lagrange multiplier gives the rate of
change in the objective function with respect to the rate of
change in the right-hand side of constraint (1). In the sam-
ple problem, it may be interpreted as the cost to the objec-
tive function per unit of even harvest flow. Next, y1 is
passed back to each of the subproblems so that they may
be solved again using this new penalty (Lagrange multi-
plier) for the joint constraints. [P6] is solved again for
each management zone. This determines a new proposed
plan for each management zone that gets entered into the
master problem as follows:
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½E3�

maximize ðc1x01Þz
0

1
þ ðc1x11Þz11 þ ðc2x02Þz02 þ ðc2x12Þz12

subject to :

ð1Þ ðA1x
0
1Þ þ ðA1x

1
1Þz11 þ ðA2x

0
2Þz02 þ ðA2x

1
2Þz12 � �����

ð2:1Þ z01 þ z11 � 1

ð2:2Þ z02 þ z12 � 1

ð3Þ zhv � 0 8v; h

Each time the master problem is solved with the new pro-
posed plans submitted for each subproblem, it determines a
convex combination of the plans for each subproblem by
choosing zhv , so that it maximizes the value of the plan for
the entire forest and adheres to the harvest flow constraints.
This procedure of generating columns to enter the master
problem is continued until the algorithm converges.

Generalizing to n management zones, the master problem
at the hth iteration is described by formulation [P7]. Note
that instead of subscripting x with the iteration index h, we
have denoted its dependence on the price yh, which is in-
dexed by h.

½P7�

maximize
Xn

v¼1

Xm�1

h¼0

cvxvðyhÞ zhv
subject to :

ð1Þ
Xn

v¼1

Xm�1

h¼0

AvxvðyhÞzhv � �����

ð2Þ
Xm�1

h¼0

zhv � 1 v ¼ 1; 2; :::; n

ð 3Þ zhv � 0 8v; h

Each column of the master problem represents an extreme
point of the polyhedron of the corresponding subproblem for
management zone v. The master problem finds a convex
combination of the extreme points for each subproblem gen-
erated up to iteration m – 1 to produce a solution, which is
likely not feasible, to the original problems [P2] and [P3].
Each time the master problem is solved, its solution produ-
ces vector yh, with a length equal to the length of �����, which
approximates the dual variables of constraint (1) in [P3].
This Lagrange multiplier (yh) is used in each management
zone subproblem to solve [P6]. Note also that the z variables
are the variables in the master problem [P7] and that the
fixed xv variables determined at the hth iteration of the sol-
ution of [P6] are dependent upon the hth approximation of
the resource prices, as denoted in [P7]. In actuality, the mas-
ter problem does not directly need xv. It only requires the
aggregate objective coefficients cvxv (the dot product) and
the columns Avxv (matrix product) if there is a change in re-
source use by the vth subsystem to determine the next ap-
proximation of the resource prices. Most mathematical
programming software allows the dual variables to be re-
trieved; hence, y can be obtained by solving [P7] directly, as
done in this study, as opposed to solving its dual formulation.

Each time the master problem is solved, all subproblems
are solved with the new penalty or price. After subproblem
v is solved, at the hth iteration, its optimal value �h

v is com-
pared with �hv , the Lagrange multiplier of the convexity con-

straint (constraint (2) of [P7]) for subproblem v in the
master problem at the hth iteration.

½3� �h
v � �h

v < 0

If [3] holds, then the generated column for subproblem v,
which represents an extreme point of the subproblem’s fea-
sible region, is added to the master problem. Condition [3]
indicates that a cost-reducing column has been found that
needs to be added to the basis of the master problem. When
no more cost-reducing columns can be added to the basis,
[3] will not be satisfied for any subproblem. The algorithm
should be allowed to continue making iterations between
solving the master problem and then solving subproblems
until it is determined that no more cost-reducing columns
exist to add to the master problem.

It is possible for the Dantzig–Wolfe decomposition algo-
rithm to quickly produce solutions that are close to optimal,
but then make only infinitesimal improvements as it nears
convergence in successive iterations. For this reason, we
employ condition [C1] to determine if the difference be-
tween the optimal value of the master problem and the sum-
mation over the objective function values of all subproblems
is less than a prespecified tolerance, ".

½C1�
Xn

v¼1

�h
v � �h

�����

����� � "

where " is a small number (in this paper " = 0.000 000 01),
and �h is the optimal value of the master problem at itera-
tion h.

The summation over the objective function values of all
subproblems provides an upper bound to the optimal value
of the master problem, while the master problem provides
an upper bound to the optimal value of the original prob-
lems [P2] and [P3]. Hence, when [C1] is met, the current
(iteration h) master problem objective function value is
within " of the true master problem optimum value; there-
fore, when [C1] is met we consider the Dantzig–Wolfe rou-
tine converged. Alternatively, the algorithm can be
terminated when an iteration is reached for which there are
no cost-reducing columns identified for every subproblem.
The convergence of the Dantzig–Wolfe algorithm applied in
this study will be discussed further with the results.

Upon termination of the algorithm, if x were a fractional
variable instead of integer, the convex combination:

½4� xv ¼
Xm

h¼0

zhvxvðyhÞ

would yield an optimal solution to the original problems
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[P2] and [P3]. However, since the convex combination [4] is
not guaranteed to be a binary (0–1, integer) vector, since z is
not constrained to be integer, this solution, in general, does
not solve [P5] and therefore also not [P2] and [P3], since
[P2], [P3], and [P5] require x to be a binary (0–1, integer)
vector. However, solving the problem using this algorithm
supplies two important pieces of information without ever
having to solve the original problem, which in many cases is
not possible because of computational complexity: (1) a tight
upper bound on the optimal value of the original problems
[P2] and [P3] and (2) resource prices that can be used to ob-
tain close approximate solutions of the original problems
[P2] and [P3]. Since the subproblems [P6] are solved with
the requirement of integrality, the optimal value of [P7] pro-
vides a tighter bound on the optimal value of [P3] than that
obtained by simply relaxing the integrality constraints (3) in
[P3] (see Martin 1999). Thus, a tighter upper bound (the op-
timal value of the master problem) is obtained for the opti-
mal value of [P2] and [P3] than would be produced by
solving [P2] and [P3] as a linear program (see Martin 1999).
The bound for the actual objective function of [P2] and [P3]
measures an approximate solution’s verity. The optimal va-
lue of [P2] and [P3] will be less than the objective function
value of [P2] and [P3] using the relaxed solution determined
by [4], which will be less than the optimal value of [P2] and
[P3] solved as a pure linear program with the integer con-
straints relaxed. This paper makes use of the tighter upper
bound provided by the master problem’s optimal value by
comparing the objective function value of approximate solu-
tions to the optimal value of the master problem.

This paper considers the solutions of each subproblem
(management zone plan computation), solved separately using
the approximate prices (those produced at convergence of
[P7]), as a candidate solution to [P2] and [P3]. Hence, a con-
vex combination of the solutions produced in the master prob-
lem is used for obtaining a bound and for obtaining a harvest
flow penalty price, but is not used directly for determining the
approximate price solution to the planning problem [P2] and
[P3]. Instead, we consider the solution to each subproblem
solved using the converged upon approximate resource prices.
The solutions for each subproblem obtained from using the
converged prices, considered together, provide a solution for
the entire forest. In general, owing to the integer requirements,
this solution does not match the solution or optimal value of
[P2] and [P3]. It also does not match the optimal value
obtained from solving [P7], because [P7] takes a convex com-
bination of plans (see [4]) solved under various resource pri-
ces computed before and up to convergence of the algorithm.
The forest-wide solution, constructed from solving [P6] for
each management zone using the final converged upon
approximate price vector, is denoted as the price-directed de-
composition solution. This solution may not be optimal or fea-
sible. The results of this paper inspect the deviation of the
approximate price solution from the actual solution to [P2]
and [P3] by using the bound provided in [P7] and by inspect-
ing the violation of the relaxed, joint constraints in [P5].

Price-directed decomposition case study

Data description
To evaluate the utility of the price-directed decomposition

approach, randomly assembled planning problems were gen-
erated from an actual forest data set. Forest inventory data
containing spatial and volume forecast information were ob-
tained from an anonymous source. These stands were organ-
ized into 237 management zones, ensuring that adjacent
stands were grouped in the same management zone. A man-
agement zone, on average, contains 36 stands, and each
stand contains an average of 5.45 management alternatives.
A planning problem was formed by randomly selecting be-
tween 6 and 20 (the number selected with equal probability)
management zones without replacement from the population
of 237. This procedure was followed to produce 75 unique
planning problems. Because of the large number of planning
problems involved, any block of stands with more than 150
contiguous stands was omitted from the population. The
average number of stands per planning problem was 485.87.
The largest planning problem had 806 stands and the small-
est had 187 stands.

Each planning problem consisted of eight 5-year planning
periods, giving a 40-year planning horizon. The allowable
harvest volume deviation among consecutive periods was
constrained to be within ±10%. Adjacent stands were pre-
cluded from harvest within the same 5-year period and one
period before and after harvest. The objective was to maxi-
mize the net present value of the timber harvest income us-
ing an 8% discount rate. Note that including additional
rotations does not change the inherent block angular struc-
ture of the problem or the algorithm presented; however, ad-
ditional rotations do increase the size of the planning
problem, particularly the number of columns.

Solution procedure

Each of the 75 planning problems gives an instance of
[P2] and [P3]. Each was decomposed and solved according
to the methodology discussed, using CPLEX 8.1 to solve
the subproblems and the master problem. CPLEX was run
under its default parameters.

Choosing xv = 0 for all management zones v provides an
initial feasible solution to the planning problem formulations
[P2], [P3], and [P5]. This corresponds to a plan in which no
management is done in the master problem. This means that
the columns of the master problem and the objective coeffi-
cients are all zero except for the convexity constraints (see
[P7]). This translates to an initial resource price of zero (y =
0), because the marginal change in the objective function
with respect to �����, the right-hand side of constraint (1) in
[P7], is zero. Hence, the subproblems are initially solved
using a resource price of y = 0. The algorithm proceeds as
the example considered in [E1]–[E3].

Results
The results derived from solving the 75 planning prob-

lems are used to evaluate the utility of the decomposition
procedure. This includes an analysis of the convergence of
the decomposition procedure, the optimality of the plans
computed relative to the upper bound discussed, the viola-
tion of timber harvest flow restrictions due to their relaxa-
tion, and the resulting solution times. Figure 2 presents the
size distribution of the 75 randomly generated planning
problems in terms of the number of stands considered.
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Solution effort: number of iterations and computing time
Each planning problem follows formulation [P2] and is

solved using the price-directed decomposition algorithm;
thus, models [P2]–[P7] are all relevant descriptions of the
formulation and solution process. In using this algorithm,
the maximum number of planning iterations (the number of
times the master problem is solved) was set to equal 85. The
planning iterations are indexed by h in [P7], and m indicates
the number of iterations used. Generally, far fewer planning
iterations than 85 are required because of convergence of
the algorithm (condition [C1] is met with " =
0.000 000 01). After a maximum of 85 iterations, the algo-
rithm terminates with the approximate prices and the corre-
sponding solutions for each management zone. Seven times
out of the 75 problems solved, 85 iterations were reached
prior to convergence. On average, however, 29.7 iterations
were required, including the seven problems that did not
converge by 85 iterations. Excluding the problems that did
not converge, only 24 iterations on average were required.
It is possible that including an additional stopping criterion
would reduce the number of iterations in those problems
requiring 85 iterations. As previously mentioned, imposing
condition [C1] with an additional condition (a planning
iteration without any identified reduced cost columns) may
further reduce the number of iterations required in the non-
converging problems.

If this iterative pricing approach is used to help guide
the actual planning process as described in Dantzig (1963,
p. 455), an average of 29.7 iterations may pose a challenge
from an implementation viewpoint. However, one might
mitigate this challenge by first determining an approximate
resource price before integrating this type of iterative solu-
tion process in the planning cycles. At any point during the
solution process, resource prices can be communicated to
zone managers so that they can build a plan that is com-
pletely independent of the other zones in the planning
problem. Highly complex spatial decisions must be made
at the management zone level, making the use of one large
planning model ineffective. Thus, a method that allows
spatial plans at the management zone level to be computed
in a way that preserves near optimality of the plan across

all management zones (i.e., the entire forest plan) seems
beneficial.

A computing machine with a 756 MH processor and 384
MB of RAM was used for all computations. Figure 3 shows
the solution times plotted against problem size, measured by
the number of stands. The mean solution time is 22 s. The
longer solution times can be partially explained by examin-
ing the number of stands in the planning problem and by the
largest block of contiguous stands in a management zone.
Figure 4 shows the trend between the largest block of con-
tiguous stands in a problem plotted against the solution
times. Problems with large contiguous blocks of stands take
longer to solve, an expected outcome, since solution times
are expected to grow exponentially for nonpolynomial hard
integer programming problems. Using decomposition re-
duces the size of the integer programming problems and,
therefore, the computational time required.

Deviation from optimality and constraint violations
Resource prices carry information that allows planning to

Fig. 3. Solution time for each randomly generated problem plotted
against the number of stands in the problem.

Fig. 4. Largest contiguous block of stands in a management zone
plotted against solution time.

Fig. 2. The number of stands in the solved planning problems.
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be decentralized. However, owing to the spatial adjacency
constraints, the prices yield solutions that do not exactly
meet the original formulation specifications [P2] and [P3].
The optimal value found by using the price-directed decom-
position algorithm may be quite different from that of [P2],
and the fulfillment of the timber harvest flow constraints
may not be met, although the spatial restrictions will be pre-
served. [P5] reflects the multiobjective nature of using La-
grangian relaxation where harvest flow violation is weighed
in the objective function against the net present value of
timber income. Indeed, the optimal value of the master
problem is an upper bound to [P2] (Martin 1999). Moreover,
for each iteration h in the algorithm, the solution computed
for each management zone can be implemented as a plan
that preserves all of the restrictions of [P2] and [P3], except
the joint timber harvest flow constraints. A measure of the
plan’s utility relative to the desired solution of [P2] and
[P3] can be depicted in terms of its optimal value relative
to the upper bound of the optimal value of [P2] and [P3]
(the optimal value of the master problem) while considering
the violation of timber harvest flow constraints. Using the
optimal value of the master problem as an upper bound on
the optimal value of [P2] and [P3] for each of the planning
problems solved, Fig. 5 displays the percentage of the upper
bound attained using the price-directed decomposition solu-
tion plotted against the percentage of timber harvest flow
violation over all time periods. The percent timber harvest
flow violation is defined as the summation of violation for
all harvest flow constraints divided by the total volume
scheduled for harvest. If these constraints are violated when
using the price-directed decomposition solution, the total
harvest volume required to make the solution feasible is
the sum of the absolute values of the amount of harvest
volume that must be added to, or subtracted from, the
right-hand side of the timber harvest flow constraints. The
mean percent difference between the master problem’s op-
timal value and the objective function value of the decom-
position algorithm is 0.047%, with standard deviation
0.2%. The mean percent timber harvest flow violation is

0.05%, with a standard deviation of 0.05%. Although the
timber harvest violations are consistently small, they may
still be unacceptable. If timber harvest flow constraints are
extremely rigid — for example, if timber harvest flow
must not deviate more than ±10% among periods — then
a method is needed to eliminate such violations. One op-
tion would be to manually adjust the harvest plan without
rerunning the model. Another option would be to rerun the
model using a value slightly less than ±10%, like 9.99%,
so that the calculated flow is within ±10% when the solu-
tion is found. In terms of optimality and joint constraint vio-
lation, the price-directed approach that allows the
management zone planning problems to be solved sepa-
rately supplies solutions that are extremely close to the op-
timal solution without substantially violating any
constraints. In measuring this aspect against the objective,
it appears that the algorithm can produce solutions that sat-
isfy the original problem formulation [P2] to within
0.047% of optimality and to within 0.05% (on average) of
timber harvest flow violation. The small standard deviation
associated with the results shown in Fig. 5 indicates that the
procedure is consistent.

Relationship between planning iterations and number of
management zones considered

Figure 6 shows the relationship between the number of
iterations required by the master problem in each of the 75
sample problems plotted against the number of management
zones in each problem. The graph indicates that there is no
increasing trend in the number of planning iterations re-
quired as the number of management zones increases. The
number of planning iterations required for most of the prob-
lems is between 20 and 30. Figure 6 shows that the number
of planning iterations appears to decrease slightly with the
number of management zones considered. Also shown in
Fig. 6 are the problems that did not converge within the
specified tolerance required to stop the algorithm. These
problems were stopped when the algorithm reached 85 itera-
tions. Figure 5 shows that although condition [C1] was not

Fig. 5. Percentage of the upper bound (defined as the price-directed
approach optimal value divided by the optimal value of [P7]) at-
tained, plotted against harvest flow violation.

Fig. 6. Number of planning iterations plotted against the number of
management zones for each of the 75 sample planning problems
solved.
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met, good solutions (within 0.8% of optimality) were always
found. Although not presented here, there was also no rela-
tionship found between the size of the management zones
and the number of planning iterations required.

Discussion and conclusion
To formulate and solve the hierarchical forest production

planning problem, a resource-pricing approach derived from
Lagrangian relaxation, referred to as price-directed decom-
position, was used. This allowed the resulting planning
problem to be solved using column generation, also known
as Dantzig–Wolfe decomposition. To investigate the impact
of this method in terms of objectives being met and con-
straints being violated, problems were randomly generated
from real forest inventory data. The 75 test problems al-
lowed the price-directed algorithm to be analyzed over sev-
eral problems as opposed to a single problem. This larger set
of test problems shows trends that would be otherwise unob-
servable. The results suggest that there is little sacrifice in
joint constraint violation and that objectives are achieved us-
ing the proposed method.

We view price-directed decomposition as a refinement to
the hierarchical planning model and having major benefits.
It starts with a single model formulation and applies Dant-
zig–Wolfe decomposition to achieve a decentralized inter-
pretation and solution procedure. Providing a formulation of
the planning problem in absence of the solution procedure is
a noteworthy difference from past methods that have ad-
dressed the MIP hierarchical forest planning problem.

Computational complexity and centralized planning have
been discussed as two of the major drawbacks of FORPLAN,
a planning model developed by the USDA Forest Service
capable of solving large-scale forest planning problems
(see Bare and Field 1986; Iverson and Alston 1986; John-
son 1986). Following FORPLAN, there was an emphasis
on computing feasible plans at the management zone level
and then aggregating these plans to provide a forest-level
plan (i.e., a bottom-up approach). While this approach im-
proves tractability and implementation at the management
zone level, it can result in suboptimal achievement of forest-
wide (strategic) objectives. Because of the rule-based heu-
ristics that must be applied at the management zone level,
the objective function often suffers when managers attempt
to meet joint constraints in a bottom-up approach. On the
other hand, a top-down method to solve a strategic linear
program that provides goals or production targets for man-
agement zone level problems may suboptimize the overall
forest plan because of insufficient information about individ-
ual management zones. The recognition that both bottom-up
and top-down approaches specify solution procedures that
operate on underspecified information, leading to subopti-
mal plans, has prompted the consideration of feedback and
feed-forward mechanisms (Gunn 1991) and the hierarchical
approach used herein.

This paper has developed and implemented an iterative
approach that uses shadow prices on joint constraints to con-
vey forest-level information to each management zone level
and aggregated management-zone-level solutions under the
existing shadow prices to convey information to the strate-
gic-level problem. The cost of this approach, if carried out

organizationally as opposed to computationally, is that plans
have to be computed multiple times. The trade-off between
improving the solution and the cost of planning can be as-
sessed to indicate when to terminate the feedback and feed-
forward iterations, as suggested in Burton and Obel (1977).
Although previous research primarily focused on spatial
planning, which can be viewed as tactical, there is a need to
translate management zone level activity to forest-level ob-
jectives. The approach presented here creates the informa-
tion link between forest-level planning and management
zone level planning.
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Appendix A. Constructing adjacency con-
straints from management alternatives

Here, we present the formulation used in this study to en-
force green-up adjacency restrictions. Implementing adja-
cency constraints in this way makes it possible to easily
consider multiple rotations. The example illustrates two ro-
tations with green-up restrictions that are only enforced dur-
ing the same harvest period instead of one period before and
after as presented in the body of the paper.

Consider the contiguous block of three stands in manage-
ment zone 2 in Fig. 1. Further, consider several manage-
ment alternatives that have been prepared for each of these
stands, for example, with two rotations embedded within
each alternative. Suppose that each stand has two manage-
ment alternatives. A management alternative specifying
when a harvest occurs can be represented as a binary col-
umn Cij, indicating when stand i is harvested under manage-
ment alternative j. An example matrix indicating harvest
periods that may require green-up restrictions is presented
in Table A1.

In generating adjacency constraints, one can define an in-
dicator function I.

½A:1� Ii0j0;i;j ¼ 1

if stand i’, under its j’th management alternative, produces a
green-up violation with stand i under its jth management al-
ternative; otherwise Ii0j0;i;j ¼ 0. Consider writing the adja-
cency constraint for stand 1 under management alternative
1. Using option C11 precludes the option of C32 only.
Therefore, if xij is the decision variable for a particular man-
agement option, the following constraint [A.2] is generated:

½A:2� x11 þ x32 � 1

Consider writing the constraint for management alterna-
tive C12. Alternative C12 produces a green-up violation
with stand 2 under alternative 1 during its first harvest and
also a green-up violation with stand 3 under its second alter-
native. This induces constraint [A.3].

½A:3� x12 þ x21 þ x32 � 1

This processing of each stand and alternative can be con-
tinued until all stands and alternatives have been considered.
Some of the constraints generated in this fashion will be re-
plicated. In the matrix generation process used in this paper,
green-up violations between stands that were considered
previously were not repeated. Hence, for example, when
stand 3, management alternative 2 is processed, a constraint
restricting selection of C12 and C32 will not be generated

2020 Can. J. For. Res. Vol. 37, 2007

# 2007 NRC Canada



because it would be redundant; it was generated when stand
1, alternative 2 was processed.

Suppose we only want to consider adjacency in the first
three periods of the problem. The indicator function I (see
[A.1]) is simply changed to only yield a value of 1 when a
green up violation is produced in the first three periods; oth-
erwise, I = 0. It should be evident that the number of harvest
rotations embedded in a management alternative does not af-
fect the logic of this algorithm. Generally, more harvest ro-
tations increase the number of columns in a planning
problem; however, additional rotations do not affect the
ability to perform this adjacency constraint method.

Table A1. An example matrix indicating harvest activity.

Time period C11 C12 C21 C22 C31 C32

1 1 0 0 0 0 1
2 0 1 1 0 0 0
3 0 0 0 1 0 0
4 0 0 0 0 1 0
5 1 0 0 0 0 0
6 0 1 0 0 0 1
7 0 0 1 0 0 0
8 0 0 0 1 1 0

Note: Harvests for a time period (1–8) and management alternative
(C11–C32) pair are coded as 1; nonharvests are shown with 0.
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